Deciding whether a given function is quasiconvex is generally a difficult task. Here, we discuss a number of numerical approaches that can be used in the search for a counterexample to the quasiconvexity of a given function W. We will demonstrate these methods using the planar isotropic rank-one convex function $$\begin{aligned} W_\mathrm{magic}^+(F)=\frac{\lambda _\mathrm{max}}{\lambda _\mathrm{min}}-\log \frac{\lambda _\mathrm{max}}{\lambda _\mathrm{min}}+\log \det F=\frac{\lambda _\mathrm{max}}{\lambda _\mathrm{min}}+2\log \lambda _\mathrm{min}\,, \end{aligned}$$
W
magic
+
(
F
)
=
λ
max
λ
min
-
log
λ
max
λ
min
+
log
det
F
=
λ
max
λ
min
+
2
log
λ
min
,
where $$\lambda _\mathrm{max}\ge \lambda _\mathrm{min}$$
λ
max
≥
λ
min
are the singular values of F, as our main example. In a previous contribution, we have shown that quasiconvexity of this function would imply quasiconvexity for all rank-one convex isotropic planar energies $$W:{\text {GL}}^+(2)\rightarrow {\mathbb {R}}$$
W
:
GL
+
(
2
)
→
R
with an additive volumetric-isochoric split of the form $$\begin{aligned} W(F)=W_\mathrm{iso}(F)+W_\mathrm{vol}(\det F)={\widetilde{W}}_\mathrm{iso}\bigg (\frac{F}{\sqrt{\det F}}\bigg )+W_\mathrm{vol}(\det F) \end{aligned}$$
W
(
F
)
=
W
iso
(
F
)
+
W
vol
(
det
F
)
=
W
~
iso
(
F
det
F
)
+
W
vol
(
det
F
)
with a concave volumetric part. This example is therefore of particular interest with regard to Morrey’s open question whether or not rank-one convexity implies quasiconvexity in the planar case.