Although smoking is not associated with prostate cancer risk overall, smoking is associated with prostate cancer recurrence and mortality. Increased cadmium (Cd) exposure from smoking may play a role in progression of the disease. In this study, inductively coupled plasma mass spectrometry was used to determine Cd, arsenic (As), lead (Pb), and zinc (Zn) levels in formalin-fixed paraffin embedded tumor and tumor-adjacent non-neoplastic tissue of never- and ever-smokers with prostate cancer. In smokers, metal levels were also evaluated with regard to biochemical and distant recurrence of disease. Smokers (N =25) had significantly higher Cd (median ppb, p =0.03) and lower Zn (p =0.002) in non-neoplastic tissue than never-smokers (N =21). Metal levels were not significantly different in tumor tissue of smokers and non-smokers. Among smokers, Cd level did not differ by recurrence status. However, the ratio of Cd ppb to Pb ppb was significantly higher in both tumor and adjacent tissue of cases with distant recurrence when compared with cases without distant recurrence (tumor tissue Cd/Pb, 6.36 vs. 1.19, p =0.009, adjacent nonneoplastic tissue Cd/Pb, 6.36 vs. 1.02, p =0.038). Tissue Zn levels were also higher in smokers with distant recurrence (tumor, p =0.039 and adjacent non-neoplastic, p =0.028). These initial findings suggest that prostate tissue metal levels may differ in smokers with and without recurrence. If these findings are confirmed in larger studies, additional work will be needed to determine whether variations in metal levels are drivers of disease progression or are simply passengers of the disease process.