Organic electrochemical transistors (OECTs) utilize ion flow from the electrolyte to modulate the electrical conductivity of the whole bulk organic semiconductor channel. With the characteristic of mixed ionic-electronic conducting in the entire volume, OECTs exhibit high transconductance and act as good transducers, particularly in bioelectronics. To gain high-performance OECTs, developing novel high-performance polymeric semiconductors is important. In this article, operation principles, performance evaluations, and polymerization methods are first discussed. We then analyze the molecular design strategies for high-performance OECT materials and highlight the characteristics and effects of backbone design and side chain engineering. Finally, we discuss some neglected and unsolved issues and provide an outlook for the OECTs research and development.