Literature describes kinetics of reactions of alcohols, phenols, carboxylic acids, amines and amides with oxiranes such as ethylene oxide and propylene oxide. However, there is no information regarding kinetic of reaction of imides with oxiranes. In this article the kinetics of the reaction of cyclic monoimides: succinimide, phtalimide, and glutarimide, with ethylene and propylene oxides in presence of triethylamine in aprotic solvent was studied. The rate laws for those processes were established based upon on dilatometric measurements. I was said that cyclic monoimides react with oxiranes in presence of triethylamine to give N-(2-hydroxyalkyl)imides as major product. This product react further with oxiranes in consecutive reaction. The kinetics of the reaction of cyclic mono-imides with oxiranes obey the following rate law: V = k 1/2 . Based upon kinetic data the following orders of reactivity of imides and oxiranes were obtained: phtalimide ≥ succinimide > glutarimide and ethylene oxide > propylene oxide. The solvent (DMF, DMSO and dioxane) effect was also studied. From temperature dependences the thermodynamic parameters: activation energy, enthalpy and entropy from linear Eyring plots were obtained.