In this article, epitaxial structures have been successfully obtained in the isotactic polypropylene (iPP)/polyethylene (PE) blends by an accessible injection molding methods. By studying a series of iPP/PE blends, the evolution of the epitaxial growth of PE lamellae on the oriented iPP lamellae has been detailedly discussed via wide‐angle X‐ray diffraction, small‐angle X‐ray scattering, scanning electron microscopy and differential scanning calorimetry. Unexpectedly, the exactly epitaxial angles between peculiarly arranged PE lamellae and oriented PP lamellae are all larger than the classical epitaxy theory value of 50°, and it even increases gradually with increasing PP content. It is inferred that the special crystallization of PE is the consequence of joint construction of the oriented PP crystals and the continuous intense shear field provided by pressure vibration injection molding. The epitaxial structures play a positive role in the interfacial connection between two components; thus, the mechanical properties of the blends are improved. This work provides an insight understanding on the formation mechanism of the epitaxy crystallization under shear field. Copyright © 2017 John Wiley & Sons, Ltd.