The physical properties and morphologies of polymers are pivotal for their manufacturing and processing at the industrial scale. Here, we present the formation of either fibers or micrometer-sized polyethylene beads by using the MIL-100(Cr) and MIL-101(Cr) zeotypes. The MOF structures have been used for ethylene polymerization with diethylaluminum chloride (DEA) as a cocatalyst, resulting in very different activities and morphologies. In situ DR UV−vis−NIR and CO-probe FT-IR spectroscopy revealed the formation of different types of Cr species for each catalyst material, suggesting that the linker (for the same metal and topological structure) plays a crucial role in the formation of Cr olefin polymerization sites. Activity in ethylene polymerization in toluene at 10 bar and 298 K was related to the observed spectra, corroborating the presence of different types of active sites, by their different activities for high-density polyethylene (HDPE) formation. SEM micrographs revealed that although MIL-100 and MIL-101 exhibit identical zeolitic MTN topology, only the latter is able to collapse upon addition of DEA and subsequent ethylene insertion and to fracture forming polymer beads, thus showing noticeable activity in HDPE formation. We ascribed this effect to the higher pore volume and, thus, fragility of MIL-101, which allowed for polymer formation within its larger cages. MOFs were compared to the nonporous chromium(III) benzoate [Cr 3 O(O 2 CPh) 6 (H 2 O) 2 ]-(NO 3 )•nH 2 O complex (1), in order to study the effect of the embodiment in the porous framework. The properties of the polymer obtained under identical reaction conditions were comparable to that of MIL-101(Cr) but very different morphologies were observed, indicating that the MIL-101(Cr) structure is necessary to impart a certain architecture at the microscale. This work clearly shows that MOFs can be used as catalytically active morphology regulators for ethylene polymerization. Moreover, even for an identical topology and metal in a MOF structure, the linker and the pore structure play crucial roles and have to be carefully considered in the design microporous coordination polymers for catalytic purposes.