In the first part of this study, the electrochemical polymerization of two compounds, 3,5-dihydroxybenzoic acid and 2′,6′-dihydroxyacetophenone, was compared in dimethyl sulfoxide solvent on platinum and glassy carbon electrodes. The voltammograms obtained showed remarkable differences between the two monomers and between the two electrode materials. The acetophenone derivative formed electropolymer remnants at the electrodes, while in the case of the benzoic acid derivative, practically no passivation occurred, and the scanning electron microscopic results reinforced this. A few stackings adsorbed only after electropolymerization from a highly concentrated solution of dihydroxybenzoic acid. As a modifying layer on the platinum and glassy carbon electrodes, the prepared films from 2′,6′-dihydroxyacetophenone were tested for tributylamine in acetonitrile and in an aqueous solution of a redox-active compound, hydroquinone, during the stirring of the solution. More stable amperometric current signals could be reached with modified platinum than with glassy carbon, and the significant influence of the organic washing liquid after deposition was established via the study of noise level. In this respect, acetone was the best choice. The amperometric signals with the modified platinum obtained upon the addition of aliquots of the stock solution resulted in a 3.29 μM detection limit.