A novel hydrogen-bonded supramolecular crown-ether-based inclusion compound, [(DL-α-Phenylglycine)(18-crown-6)]+[(CoCl4)0.5]−(1), was obtained via evaporation in a methanolic solution at room temperature using DL-α-phenylglycine, 18-crown-6, cobalt chloride (CoCl2), and hydrochloric acid. Its structure, thermal properties, and electrical properties were characterized via elemental analysis, single-crystal X-ray diffraction, variable-temperature infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and variable temperature–variable frequency dielectric constant testing. The compound was a monoclinic crystal system in the C2 space group at low temperature (100 K) and room temperature (293 K). Analysis of the single crystal structure showed that [(CoCl4)0.5]− presented an edge-sharing ditetrahedral structure in the disordered state, while the protonated DL-α-phenylglycine molecule in the disordered state and intramolecular hydroxyl group (-OH) underwent dynamic rocking, causing a significant stretching motion of the O-H···Cl-type one-dimensional hydrogen bond chain. This resulted in dielectric anomalies in the three axes of the crystal, thus showing significant dielectric anisotropy.