2008
DOI: 10.1016/j.ejor.2007.02.059
|View full text |Cite
|
Sign up to set email alerts
|

Polyhedral combinatorics of multi-index axial transportation problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2012
2012
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 22 publications
0
1
0
Order By: Relevance
“…\end{equation*}$$By Lemma 5.3.4, we need only show that there exist coefficients λX0$\lambda ^{\prime }_{{\mathcal {X}}}\geqslant 0$ for each p(X)P+$p({\mathcal {X}}) \in {\mathcal {P}}^+$ so that λi,j=λi,j$\lambda _{i,j} = \lambda ^{\prime }_{i,j}$ for all Xj,1iprefixtp(scriptP+)$X_{j,1}^i \in \operatorname{tp}({\mathcal {P}}^+)$. In general, the set of possible {λscriptX}pfalse(scriptXfalse)scriptP+$\lbrace \lambda ^{\prime }_{{\mathcal {X}}}\rbrace _{p({\mathcal {X}}) \in {\mathcal {P}}^+}$ satisfying this property is an m$m$ ‐index transportation polytope (see, e.g., [39, section 1]). As for i$i$ fixed we have jλi,j=p(X)P+λX0$\sum _{j} \lambda _{i,j} = \sum _{p({\mathcal {X}}) \in {\mathcal {P}}^+}\lambda _{{\mathcal {X}}} \geqslant 0$, which does not depend on i$i$, this solution space is nonempty.…”
Section: Support Regular Rigid Objectsmentioning
confidence: 99%
“…\end{equation*}$$By Lemma 5.3.4, we need only show that there exist coefficients λX0$\lambda ^{\prime }_{{\mathcal {X}}}\geqslant 0$ for each p(X)P+$p({\mathcal {X}}) \in {\mathcal {P}}^+$ so that λi,j=λi,j$\lambda _{i,j} = \lambda ^{\prime }_{i,j}$ for all Xj,1iprefixtp(scriptP+)$X_{j,1}^i \in \operatorname{tp}({\mathcal {P}}^+)$. In general, the set of possible {λscriptX}pfalse(scriptXfalse)scriptP+$\lbrace \lambda ^{\prime }_{{\mathcal {X}}}\rbrace _{p({\mathcal {X}}) \in {\mathcal {P}}^+}$ satisfying this property is an m$m$ ‐index transportation polytope (see, e.g., [39, section 1]). As for i$i$ fixed we have jλi,j=p(X)P+λX0$\sum _{j} \lambda _{i,j} = \sum _{p({\mathcal {X}}) \in {\mathcal {P}}^+}\lambda _{{\mathcal {X}}} \geqslant 0$, which does not depend on i$i$, this solution space is nonempty.…”
Section: Support Regular Rigid Objectsmentioning
confidence: 99%