Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures. Their synthesis often requires several steps or the use of functionalized starting materials. This review describes the use of vicinal diamines generated from modified short peptides to access substituted diaza- and triazacyclic compounds. Small-molecule diaza- and triazacyclic compounds with different substitution patterns and embedded in various molecular frameworks constitute important structure classes in the search for bioactivity. The compounds are designed to follow known drug likeness rules, including “Lipinski’s Rule of Five”. The screening of diazacyclic and traizacyclic libraries has shown the utility of these classes of compounds for the de novo identification of highly active compounds, including antimalarials, antimicrobial compounds, antifibrotic compounds, potent analgesics, and antitumor agents. Examples of the synthesis of diazacyclic and triazacyclic small-molecule libraries from vicinal chiral polyamines generated from modified short peptides and their application for the identification of highly active compounds are described.