2022
DOI: 10.1016/j.polymer.2022.125110
|View full text |Cite
|
Sign up to set email alerts
|

Polyimide hybrid membranes with graphene oxide for lithium–sulfur battery separator applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 46 publications
0
4
0
Order By: Relevance
“…[92] The thickness of the separators typically varies between 25 and 40 µm, depending on the type of battery, they show a degree of porosity larger than 40% with an average pore size below 1 µm and are stable at temperatures up to 150 °C. Additionally, to improve the thermal and mechanical properties and wettability of the conventional separators based on PE and PP, new separators based on covalent organic framework (COF) into poly(arylene ether benzimidazole) (OPBI), [93] polyacrylonitrile (PAN) composite separators with cellulose acetate and nano-hydroxyapatite, [94] PAN with aluminum diethylphosphinate (ADEP), [95] polyimide (PI) polymer, [96] PI with polyethylene oxide (PEO) processed by electrospinning technique, [97] PI with zirconia (ZrO 2 ), [98] PI with graphene, [99] PI with hexagonal boron nitride, [100] PI with nano-tiO 2 , [101] PI with organic montmorillonite (OMMT), [102] PEO with para-aramid nanofibers (ANFs), [103] PVDF/SiO 2 , [104] poly(ethylene glycol) diacrylate (PEGDA), [105] polyurethane separator coated Al 2 O 3 particles, [89a] and poly(vinyl alcohol) with nano architecture halloysite nanotubes (NHNTs) composite separator (OPVA/NHNTs separator, [106] and new coatings of boehmite (γ-AlO(OH)) nanofibers, [107] inorganic oxide solid electrolyte layers (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , LATP), [108] SiO 2 with acrylamide (AM), [81a] Ca 3 (PO 4 ) 2 inorganic layer, [91] polyimide microsphere, [109] and plasma treatment plus zwitterion grafting [110] were developed. Further, it has been also explored the replacement of these synthetic polymers by natural polymers such as, natural wood, [111] cellulose, [96,112] silk fibroin, [113] silk fibroin with sericin, [114] poly(vinyl alcohol) (PVA), [115] lignin, [116] carrageenan, [117] among others.…”
Section: Battery Separators: Main Role and Relevant Propertiesmentioning
confidence: 99%
“…[92] The thickness of the separators typically varies between 25 and 40 µm, depending on the type of battery, they show a degree of porosity larger than 40% with an average pore size below 1 µm and are stable at temperatures up to 150 °C. Additionally, to improve the thermal and mechanical properties and wettability of the conventional separators based on PE and PP, new separators based on covalent organic framework (COF) into poly(arylene ether benzimidazole) (OPBI), [93] polyacrylonitrile (PAN) composite separators with cellulose acetate and nano-hydroxyapatite, [94] PAN with aluminum diethylphosphinate (ADEP), [95] polyimide (PI) polymer, [96] PI with polyethylene oxide (PEO) processed by electrospinning technique, [97] PI with zirconia (ZrO 2 ), [98] PI with graphene, [99] PI with hexagonal boron nitride, [100] PI with nano-tiO 2 , [101] PI with organic montmorillonite (OMMT), [102] PEO with para-aramid nanofibers (ANFs), [103] PVDF/SiO 2 , [104] poly(ethylene glycol) diacrylate (PEGDA), [105] polyurethane separator coated Al 2 O 3 particles, [89a] and poly(vinyl alcohol) with nano architecture halloysite nanotubes (NHNTs) composite separator (OPVA/NHNTs separator, [106] and new coatings of boehmite (γ-AlO(OH)) nanofibers, [107] inorganic oxide solid electrolyte layers (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , LATP), [108] SiO 2 with acrylamide (AM), [81a] Ca 3 (PO 4 ) 2 inorganic layer, [91] polyimide microsphere, [109] and plasma treatment plus zwitterion grafting [110] were developed. Further, it has been also explored the replacement of these synthetic polymers by natural polymers such as, natural wood, [111] cellulose, [96,112] silk fibroin, [113] silk fibroin with sericin, [114] poly(vinyl alcohol) (PVA), [115] lignin, [116] carrageenan, [117] among others.…”
Section: Battery Separators: Main Role and Relevant Propertiesmentioning
confidence: 99%
“…In this case, their high theoretical capacity (1675 mA h g −1 ) and energy density (2600 W h kg −1 ) make lithium–sulfur batteries (LSBs) a promising candidate to replace LIBs. 4–7…”
Section: Introductionmentioning
confidence: 99%
“…In this case, their high theoretical capacity (1675 mA h g −1 ) and energy density (2600 W h kg −1 ) make lithium-sulfur batteries (LSBs) a promising candidate to replace LIBs. [4][5][6][7] The high capacity of LSBs originates from their internal redox reaction, which can be described as S 8 + 16Li + + 16e − # 8Li 2 S. During the discharge process, metal lithium will be oxidized to release Li + and e − , and a current is generated via the migration of e − . [8][9][10] During the charge process, solid Li 2 S will be oxidized to S 8 .…”
Section: Introductionmentioning
confidence: 99%
“…Although the shuttle effect can be effectively suppressed by modifying the PP separator, the PP separator still has some inherent disadvantages. Firstly, it has poor thermal stability, which leads to poor high temperature safety of the separator and increases the safety hazard of the battery [25,26]. Secondly, the PP separator displays low wettability which reduces the electrochemical performance of the separator to a certain extent [27,28].…”
Section: Introductionmentioning
confidence: 99%