The field of dental materials is undergoing rapid advancements in the pursuit of an innovative generation of dental polymeric restorative materials. There is a growing interest in the development of a distinct category of dental polymers that transcend the conventional role of inertly filling prepared cavities. Instead, these materials possess the capacity to actively detect and respond to alterations within the host environment by undergoing dynamic and controlled molecular changes. Despite the well-established status of stimuli-responsive polymeric systems in other fields, their implementation in dentistry is still in its nascent stages, presenting a multitude of promising opportunities for advancement. These systems revolve around the fundamental concept of harnessing distinctive stimuli inherent in the oral environment to trigger precise, targeted, predictable, and demand-driven responses through molecular modifications within the polymeric network. This review aims to provide a comprehensive overview of the diverse categories of stimuli-responsive polymers, accentuating the critical aspects that must be considered during their design and development phases. Furthermore, it evaluates their current application in the dental field while exploring potential alternatives for future advancements.