The durability of building composites with polymer matrix, such as polymer concretes, is considered high or excellent. However, very few studies are available that show the properties of such composites tested long after the specimens' preparation, especially composites with fillers other than traditional rock aggregates. The paper presents the long-term compressive strength of polymer concrete containing common and alternative fine fillers, including quartz powder (ground sand) and by-products of the combustion of Polish fossil fuels (coal and lignite), tested nine or 9.5 years after preparation. The results were compiled with the data for respective specimens tested after 14 days, as well as 1.5 and 7 years. Data analysis confirmed the excellent durability of concrete-like composites with various fillers in terms of compressive strength. Density measurements of selected composites showed that the increase in strength was accompanied by an increase in volumetric density. This showed that the opinion that the development of the strength of composites with polymer matrices taking place within a few to several days was not always justified. In the case of a group of tested concrete-like composites with vinyl-ester matrices saturated with fly ashes of various origins, there was a further significant increase in strength over time.wastes or by-products are applied to the aforementioned composites as the substitutes of the regular components. Such composites have been recently eagerly designed and produced, following the assumptions of the sustainable development concept, i.e., a concept strongly promoted for the past few years. Composites containing such wastes and/or by-products (e.g., fly ash, perlite powder, recycled glass, aggregate leftover mineral dust, etc.) are subjected to various tests [5][6][7][9][10][11][12][13], but usually only at the early stage of their service-life. The level of mechanical properties of such composites after a long period of use remains unclear.The aim of the paper is to discuss the "long-term compressive strength" of polymer concretes with traditional quartz fillers (including coarse and fine aggregates, the same as those used in ordinary Portland cement concrete and very fine quartz powders) and sustainable secondary materials, namely the by-products of the combustion of two kinds of fossil fuels, i.e., coal (or so-called "hard coal") and lignite (or "brown coal"), mined in deposits located in Poland. The combustion processes are intended to produce electricity or heat. Due to differences in the construction of furnaces and associated combustion installations, the remaining fly ashes differ in terms of morphology and granulation, so they differently affect the consistency of PC mix [13] which, among others, influences the microstructure and, therefore, the properties of hardened composites containing such fly ashes.The tested composites are cement-free (the binder consists solely of vinyl-ester resin). There is also no water in the composition of these composites. Water disturbs or...