A series of multiblock poly(phenylene ether nitrile)s with pendant sulfoalkoxyl side chains have been developed as proton exchange membranes for fuel cells. The membranes were obtained by a solution casting method and exhibited good thermal stability, flexibility, and mechanical strength. The membranes displayed well‐developed microphase separation, which largely contributed to their excellent ion conduction ability. One of the new membranes with a low ion exchange capacity of 1.57 mequiv g−1 showed higher proton conductivity than Nafion 212 over the entire RH range (30–95%). The maximum power output generated in a single cell test reached up to 0.754, 0.640, and 0.414 W cm−2 at 70 °C under 80%, 50%, and 30% RH conditions, respectively. The current density of the membrane obtained at 0.6 V (I0.6) was as high as 640 mA cm−2, which was much higher than that of Nafion 212 (375 mA cm−2 at 30% RH), suggesting its superiority for a more rapid system start‐up. Furthermore, the in situ durability test at 50% RH was performed at a constant current loading, and the membrane did not show any significant voltage reduction over the 400 h testing period. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1940–1948