The era of mucoadhesive polymers has advanced to the next generation, focusing on targeted adhesion of chemical functional groups with mucosa. This work aims to develop boronic acid functionalized polymers, which could facilitate reversible binding with the mucin in the mucosa. Pendant groups of boronic acid were conjugated on the chains of polyvinylpyrrolidone (PVP) via C�N bonding. The evidence from FTIR spectroscopy, XPS analysis, and UV spectroscopy has been used for the confirmation of the chemical conjugation of 3-aminophenyl boronic acid (APBA) to PVP. Boronate ester formation is a pH-dependent process. High pK a values of APBA preferably cause the binding of trigonal-shaped boronic acid with sialic acid groups of mucin. Boronic acid moieties additionally benefited in mucoadhesion in comparison to PVP alone, which is a result of the formation of a five-membered boronate ester complex. The presence of boronic acid moieties enhanced the force of adhesion on porcine buccal mucosal tissue from 13.12 ± 1.52 to 19.04 ± 1.97 g force. Specific binding of the polymer to the mucosal surface caused prolonged adhesion of the polymer to the mucosal surface. A polymer blend of boronic acid functionalized PVP and zein has been explored for its potential for mucoadhesive delivery of propranolol hydrochloride.