The perming of hair is a common styling procedure with negative impact on the overall properties of the hair fibers. Usually, this process uses harsh chemicals to promote the disruption of disulfide bonds and the formation of new bonds to change the shape of hair. Here, we explored bovine serum albumin (BSA), silk fibroin (SF), keratin and two fusion recombinant proteins (KP-UM and KP-Cryst) as new perming agents. A phosphate buffer prepared at different pH values (5, 7 and 9) was used to apply the proteins to virgin Asian hair, and a hot BaByliss was used to curl the hair fibers. To assess the potential of the protein formulations for hair styling, the perming efficiency and the perming resistance to wash were measured. Furthermore, the fiber water content was evaluated to assess if the proteins protected the hair during the styling process. Despite all of the proteins being able to assist in the curling of Asian hair, the best perming efficiency and perming resistance to wash results were observed for BSA and keratin. These proteins showed perming efficiency values close to that measured for a commercial perming product (chemical method), particularly at pH 5 and 9. The increase in the hair’s internal and external water contents revealed a protective effect provided by the proteins during the application of heat in the styling procedure. This study shows the potential of proteins to be used in the development of new eco-friendly hair styling products.