This review examines the latest developments in nanoscopic antibiotic formulations used to treat infections caused by bacteria. A wide range of nanocarrier platforms are discussed, including polymer-based nanoparticles (NPs), lipid-based vesicles, mesoporous silica, and other inorganic materials. The antibiotic levofloxacin (LVF) is predominantly used as a model drug given its broad-spectrum activity. Studies in this regard have evaluated drug loading and encapsulation efficiency (EE) using analytical techniques such as FTIR, DLS, and TEM. In vitro release kinetics was characterized through dialysis and fluorescence-based assays. Zone of inhibition and viability studies provided insights into antibacterial efficacy. Some approaches incorporated stimuli-responsive polymers or targeting ligands to facilitate controlled or targeted drug release. Overall, the nanocarriers demonstrated potential for sustained antibiotic levels, reduced dosing, and improved treatment of biofilms and intracellular infections compared to free drug administration. The review offers a comprehensive analysis of this promising field with implications for combating antibiotic resistance.