The development of polymer nanocomposites has advanced, especially due to their new properties after nanoparticle incorporation. Many nanocomposites composed of synthetic polymers and/or biopolymers have been studied after incorporation of a diversity of nanoparticles, which differ in form, shape, surface area and chemical organization.In this chapter, some examples of nanocomposites based on poly-vinyl alcohol (PVA); polycarbonate (PC) and matrixes of dental resins are presented. These nanocomposites could be obtained by three basic methods: in situ polymerization, solution casting and melt extrusion. The best method is determined by the relation and route to the polymernanoparticle pair. The dispersion and distribution of nanoparticles in the polymer matrix is the key to obtaining new materials with synergism of compounds properties. This synergism depends on how strong is the intermolecular interaction between the polymer matrix and nanoparticles. The evaluation of new nano systems can be done by different techniques, usually microscopy, X-ray diffraction, thermal analysis and so on. Low-field NMR relaxometry has been used to evaluate polymer nanocomposites. This technique provides valuable information related to the interaction of the nanoparticles with the polymer matrix, and it also indicates the dispersion and distribution of these nanoparticles in the matrix.