In recent years, non-wovens have become the main segment of textile production because they can find applications in different areas. Thermal insulation properties, fire resistance, and flexibility make them cost-effective and efficient insulation panels for buildings. This paper aims to study the influence of the production method and surface treatment on the thermophysical characteristics and behavior under direct fire of two polyethylene terephthalate non-woven fabrics. The fibers have been bonded with polyacrylate adhesive or thermal and coated with silicone. Infrared spectroscopy, optical microscopy, and thermal analyses were applied to compare the non-wovens’ morphology, composition, and thermal properties. It founds that the non-woven polyester with acrylic additives and adhesive bonding has a higher thermal conductivity value and high flammability with complete combustion. In contrast, thermosetting siliconized polyester materials have limited flammability with limited droplet release. The silicone-based finish protects the polyester fibers leading to self-extinguishing and stopping the complete combustion of the sample.