The extraordinary characteristic features of metal−organic frameworks (MOFs) make them applicable for use in a variety of fields but their conductivity in microelectronics over a wide relative humidity (RH) range has not been extensively explored. To achieve good performance, MOFs must be stable in water, i. e., under humid conditions. However, the design of ultrastable hydrophobic MOFs with high conductivity for use in microelectronics as conducting and dielectric materials remains a challenge. In this Review, we discuss applications of an emerging class of hydrophobic MOFs with respect to their use as active sensor coatings, tunable low‐κ dielectrics and conductivity, which provide high‐level roadmap for stimulating the next steps toward the development and implementation of hydrophobic MOFs for use in microelectronic devices. Several methodologies including the incorporation of long alkyl chain and fluorinated linkers, doping of redox‐active 7,7,8,8‐tetracyanoquinodimethane (TCNQ), the use of guest molecules, and conducting polymers or carbon materials in the pores or surface of MOFs have been utilized to produce hydrophobic MOFs. The contact angle of a water droplet and a coating can be used to evaluate the degree of hydrophobicity of the surface of a MOF. These unique advantages enable hydrophobic MOFs to be used as a highly versatile platform for exploring multifunctional porous materials. Classic representative examples of each category are discussed in terms of coordination structures, types of hydrophobic design, and potential microelectronic applications. Lastly, a summary and outlook as concluding remarks in this field are presented. We envision that future research in the area of hydrophobic MOFs promise to provide important breakthroughs in microelectronics applications.