Tumor necrosis factor receptor 2 (TNFR2) is expressed on some tumor cells, such as myeloma, Hodgkin lymphoma, colon cancer and ovarian cancer, as well as immunosuppressive cells. There is increasingly evidence that TNFR2 expression in cancer microenvironment has significant implications in cancer progression, metastasis and immune evasion. Although nanomedicine has been extensively studied as a carrier of cancer immunotherapeutic agents, no study to date has investigated TNFR2-targeting nanomedicine in cancer treatment. From an epigenetic perspective, previous studies indicate that DNA demethylation might be responsible for high expressions of TNFR2 in cancer models. This perspective review discusses a novel therapeutic strategy based on nanomedicine that has the capacity to target TNFR2 along with inhibition of DNA demethylation. This approach may maximize the anti-cancer potential of nanomedicine-based immunotherapy and, consequently, markedly improve the outcomes of the management of patients with malignancy.Cells 2020, 9, 33 2 of 16 and tumor cells [6][7][8]. In contrast, TNFR2 expression was only reported on tumor cells and suppressive immune cells, suggesting that TNFR2 directly promotes cancer development [9]. Furthermore, the latest preclinical and clinical studies confirmed the implication of TNF-TNFR2 signaling in cancer proliferation and the suppression of immune response [10,11]. Consequently, blockade of TNF-TNFR2 axis could be a promising option for cancer treatment (Figure 1).On the other hand, nanotechnology provided several platforms in the field of immunotherapy and made significant advances towards safe and efficient targeting systems with positive clinical outcomes and minimal side effects; this is the so-called field of nanomedicine [12]. Despite the emerging trends of using nanoparticles in immunotherapy, no studies have investigated any type of nanocarriers to target TNFR2 on cancer cells. However, based on some previous novel reports about the effects of nanoparticles on immune homeostasis [13], especially using nanoparticles to promote TNFR2 + Foxp3 + regulatory T cells (Tregs) in inflammatory models [14,15], we have suggested in our recent perspective review the possibility of blocking TNF-TNFR2 axis via nanoparticles [16].