OBJECTIVE
This study investigated the optimum injection volume of polymethylmethacrylate (PMMA) to augment a novel fenestrated pedicle screw (FPS) with diameter-tapered perforations in the osteoporotic vertebral body, and how the distribution characteristics of PMMA affect the biomechanical performance of this screw.
METHODS
Two types of FPSs were designed (FPS-A, composed of 6 perforations with an equal diameter of 1.2 mm; and FPS-B, composed of 6 perforations each with a tapered diameter of 1.5 mm, 1.2 mm, and 0.9 mm from tip to head. Each of 28 human cadaveric osteoporotic vertebrae were randomly assigned to 1 of 7 groups: FPS-A1.0: FPS-A+1.0 ml PMMA; FPS-A1.5: FPS-A+1.5 ml PMMA; FPS-A2.0: FPS-A+2.0 ml PMMA; FPS-B1.0: FPS-B+1.0 ml PMMA; FPS-B1.5: FPS-B+1.5 ml PMMA; FPS-B2.0: FPS-B+2.0 ml PMMA; and conventional pedicle screws (CPSs) without PMMA. After the augmentation, 3D CT was performed to assess the cement distribution characteristics and the cement leakage rate. Axial pullout tests were performed to compare the maximum pullout force thereafter.
RESULTS
The CT construction images showed that PMMA bone cement formed a conical mass around FPS-A and a cylindrical mass around FPS-B. When the injection volume was increased from 1.0 ml to 2.0 ml, the distribution region of the PMMA cement was enlarged, the PMMA was distributed more posteriorly, and the risk of leakage was increased. When the injection volume reached 2.0 ml, the risk of cement leakage was lower for screws having diameter-tapered perforations. The pullout strengths of the augmented FPS-A groups and FPS-B groups were higher than that of the CPS group (p < 0.0001). All FPS-B groups had a higher pullout strength than the FPS-A groups.
CONCLUSIONS
The diameter of the perforations affects the distribution of PMMA cement. The diameter-tapered design enabled PMMA to form larger bone-PMMA interfaces and achieve a relatively higher pullout strength, although statistical significance was not reached. Study results indicated 1.5-ml of PMMA was a conservative volume for PMMA augmentation; more cement injection would significantly increase the risk of cement leakage.