In general, the quality of imagery from Unmanned Aerial Vehicles (UAVs) is evaluated after the flight, and then a decision is made on the further value and use of the acquired data. In this paper, an a priori (preflight) image quality prediction methodology is proposed to estimate the preflight image quality and to avoid unfavourable flights, which is extremely important from a time and cost management point of view. The XBoost Regressor model and cross-validation were used for machine learning of the model and image quality prediction. The model was learned on a rich database of real-world images acquired from UAVs under conditions varying in both sensor type, UAV type, exposure parameters, weather, topography, and land cover. Radiometric quality indices (SNR, Entropy, PIQE, NIQE, BRISQUE, and NRPBM) were calculated for each image to train and test the model and to assess the accuracy of image quality prediction. Different variants of preflight parameter knowledge were considered in the study. The proposed methodology offers the possibility of predicting image quality with high accuracy. The correlation coefficient between the actual and predicted image quality, depending on the number of parameters known a priori, ranged from 0.90 to 0.96. The methodology was designed for data acquired from a UAV. Similar prediction accuracy is expected for other low-altitude or close-range photogrammetric data.