2024
DOI: 10.4213/sm10023e
|View full text |Cite
|
Sign up to set email alerts
|

Polynomial rigidity and the spectra of Sidon automorphisms

Valerii Valentinovich Ryzhikov

Abstract: Continuum many spectrally disjoint Sidon automorphisms with tensor square isomorphic to a planar translation are produced. Their spectra do not have the group property. To show that their spectra are singular the polynomial rigidity of operators is used, which is related to the concept of linear determinism in the sense of Kolmogorov. In the class of mixing Gaussian and Poisson suspensions over Sidon automorphisms new sets of spectral multiplicities are realized. Bibliography: 12 titles.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?