2014
DOI: 10.5666/kmj.2014.54.2.271
|View full text |Cite
|
Sign up to set email alerts
|

Polynomial Unknotting and Singularity Index

Abstract: A b s t r a c t . We introduce a new method to transform a knot diagram into a diagram of an unknot using a polynomial representation of the knot. Here the unknotting sequence of a knot diagram with least number of crossing changes can be realized by a family of polynomial maps. The number of singular knots in this family is defined to be the singularity index of the diagram. We show that the singularity index of a diagram is always less than or equal to its unknotting number.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?