2022
DOI: 10.48550/arxiv.2207.13945
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Polynomials with maximal differential uniformity and the exceptional APN conjecture

Abstract: We contribute to the exceptional APN conjecture by showing that no polynomial of degree m = 2 r (2 ℓ + 1) where gcd(r, ℓ) 2, r 2, ℓ 1 with a nonzero second leading coefficient can be APN over infinitely many extensions of the base field. More precisely, we prove that for n sufficiently large, all polynomials of F 2 n [x] of such a degree with a nonzero second leading coefficient have a differential uniformity equal to m − 2.This work is partially supported by the French Agence Nationale de la Recherche through… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?