Poly(2-oxazoline)s are the synthetic polymers that are the products of the cationic ring-opening polymerization (CROP) of 2-oxazoline monomers. Due to their beneficial properties, from which biocompatibility, stealth behavior, high functionalization possibilities, low dispersity, stability, nonionic character, and solubility in water and organic solvents should be noted, they have found many applications and gained enormous interest from scientists. Additionally, with high versatility attainable through copolymerization or through post-polymerization modifications, this class of polymeric systems has been widely used as a polymeric platform for novel biomedical applications. The chemistry of polymers significant expanded into biomedical applications, in which polymeric networks can be successfully used in pharmaceutical development for tissue engineering, gene therapies, and also drug delivery systems. On the other hand, there is also a need to create ‘smart’ polymer biomaterials, responsive to the specified factor, that will be sensitive to various environmental stimuli. The commonly used stimuli-responsive biomedical materials are based mostly on temperature-, light-, magnetic-, electric-, and pH-responsive systems. Thus, creating selective and responsive materials that allow personalized treatment is in the interest of the scientific world. This review article focuses on recent discoveries by Polish scientists working in the field of stimuli-responsive poly(2-oxazoline)s, and their work is compared and contrasted with results reported by other world-renowned specialists.