Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer ␣//␣ sandwich fold with an ␣-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.crystal structure ͉ mutagenesis ͉ Walker motif ͉ AMP phosphorylation ͉ ADP phosphorylation I norganic polyphosphate (polyP) is a linear polymer composed of tens to hundreds of orthophosphate residues (P i ) linked by the energy-rich phosphoanhydride bonds, and it is found in all prokaryotes and eukaryotes (1-3). PolyP has numerous biological functions that include substitution for ATP in kinase reactions, acting as an energy source or storage reservoir of P i , chelating metals, and adjusting cellular physiology during growth, development, stress, starvation, and virulence (1, 4). Bacteria with low intracellular polyP levels show defective responses to various stress conditions, biofilm formation, quorum sensing, motility, and other virulence properties (3,5). Depending on the physiological state of the bacterium, the intracellular concentration of polyP is 0