Two-dimensional (2D) transition metal carbides and nitrides (MXenes) are a class of 2D nanomaterials that can offer excellent properties for high-performance supercapacitors. Nevertheless, irreversible restacking of MXene sheets decreases the interlayer spacing, which inhibits the ion intercalation between the MXene nanosheets and finally deteriorates the electrochemical performance of supercapacitors. Herein, aramid nanofibers (ANFs) are mixed with Ti3C2T
x
MXene to prepare MXene/ANFs composite films. The restacking of MXene sheets is inhibited by the electrostatic repulsion between ANFs and MXene. The ANFs act as intercalation agents to increase the interlayer spacing of the composite films, which can improve the ion storage ability of supercapacitors. Furthermore, the ANFs enhance the mechanical strength of the composite films due to the strong hydrogen bonding interaction and nanomechanical interlocking between ANFs and MXene, endowing the composite films with self-standing property. The resultant composite films are used as electrodes for flexible solid-state supercapacitors to achieve high specific capacitance (996.5 mF cm−2 at 5 mV s−1) and outstanding cycling stability. Thus, this work provides a potential strategy to regulate the properties of 2D nanomaterials, which may expand the application of them in energy storage, ionic separation, osmotic energy conversion and beyond.