Biomarker discovery and development are popular for detecting the subtle diseases. However, biomarkers are needed to be validated and approved, and even fewer are ever used clinically. Imaging biomarkers have a crucial role in the treatment of cancer patients because they provide objective information on tumor biology, the tumor's habitat, and the tumor’s signature in the environment. Tumor changes in response to an intervention complement molecular and genomic translational diagnosis as well as quantitative information. Neuro-oncology has become more prominent in diagnostics and targeted therapies. The classification of tumors has been actively updated, and drug discovery, and delivery in nanoimmunotherapies are advancing in the field of target therapy research. It is important that biomarkers and diagnostic implements be developed and used to assess the prognosis or late effects of long-term survivors. An improved realization of cancer biology has transformed its management with an increasing emphasis on a personalized approach in precision medicine. In the first part, we discuss the biomarker categories in relation to the courses of a disease and specific clinical contexts, including that patients and specimens should both directly reflect the target population and intended use. In the second part, we present the CT perfusion approach that provides quantitative and qualitative data that has been successfully applied to the clinical diagnosis, treatment and application. Furthermore, the novel and promising multiparametric MR imageing approach will provide deeper insights regarding the tumor microenvironment in the immune response. Additionally, we briefly remark new tactics based on MRI and PET for converging on imaging biomarkers combined with applications of bioinformatics in artificial intelligence. In the third part, we briefly address new approaches based on theranostics in precision medicine. These sophisticated techniques merge achievable standardizations into an applicatory apparatus for primarily a diagnostic implementation and tracking radioactive drugs to identify and to deliver therapies in an individualized medicine paradigm. In this article, we describe the critical principles for imaging biomarker characterization and discuss the current status of CT, MRI and PET in finiding imaging biomarkers of early disease.