Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
SummaryObstructive sleep apnea is a heterogeneous sleep disorder with varying phenotypes. Several studies have already performed cluster analyses to discover various obstructive sleep apnea phenotypic clusters. However, the selection of the clustering method might affect the outputs. Consequently, it is unclear whether similar obstructive sleep apnea clusters can be reproduced using different clustering methods. In this study, we applied four well‐known clustering methods: Agglomerative Hierarchical Clustering; K‐means; Fuzzy C‐means; and Gaussian Mixture Model to a population of 865 suspected obstructive sleep apnea patients. By creating five clusters with each method, we examined the effect of clustering methods on forming obstructive sleep apnea clusters and the differences in their physiological characteristics. We utilized a visualization technique to indicate the cluster formations, Cohen's kappa statistics to find the similarity and agreement between clustering methods, and performance evaluation to compare the clustering performance. As a result, two out of five clusters were distinctly different with all four methods, while three other clusters exhibited overlapping features across all methods. In terms of agreement, Fuzzy C‐means and K‐means had the strongest (κ = 0.87), and Agglomerative hierarchical clustering and Gaussian Mixture Model had the weakest agreement (κ = 0.51) between each other. The K‐means showed the best clustering performance, followed by the Fuzzy C‐means in most evaluation criteria. Moreover, Fuzzy C‐means showed the greatest potential in handling overlapping clusters compared with other methods. In conclusion, we revealed a direct impact of clustering method selection on the formation and physiological characteristics of obstructive sleep apnea clusters. In addition, we highlighted the capability of soft clustering methods, particularly Fuzzy C‐means, in the application of obstructive sleep apnea phenotyping.
SummaryObstructive sleep apnea is a heterogeneous sleep disorder with varying phenotypes. Several studies have already performed cluster analyses to discover various obstructive sleep apnea phenotypic clusters. However, the selection of the clustering method might affect the outputs. Consequently, it is unclear whether similar obstructive sleep apnea clusters can be reproduced using different clustering methods. In this study, we applied four well‐known clustering methods: Agglomerative Hierarchical Clustering; K‐means; Fuzzy C‐means; and Gaussian Mixture Model to a population of 865 suspected obstructive sleep apnea patients. By creating five clusters with each method, we examined the effect of clustering methods on forming obstructive sleep apnea clusters and the differences in their physiological characteristics. We utilized a visualization technique to indicate the cluster formations, Cohen's kappa statistics to find the similarity and agreement between clustering methods, and performance evaluation to compare the clustering performance. As a result, two out of five clusters were distinctly different with all four methods, while three other clusters exhibited overlapping features across all methods. In terms of agreement, Fuzzy C‐means and K‐means had the strongest (κ = 0.87), and Agglomerative hierarchical clustering and Gaussian Mixture Model had the weakest agreement (κ = 0.51) between each other. The K‐means showed the best clustering performance, followed by the Fuzzy C‐means in most evaluation criteria. Moreover, Fuzzy C‐means showed the greatest potential in handling overlapping clusters compared with other methods. In conclusion, we revealed a direct impact of clustering method selection on the formation and physiological characteristics of obstructive sleep apnea clusters. In addition, we highlighted the capability of soft clustering methods, particularly Fuzzy C‐means, in the application of obstructive sleep apnea phenotyping.
Obstructive sleep apnea (OSAS), which is one of the leading sleep disorders and can result in death if not diagnosed and treated early, is most often confused with snoring. OSAS disease, the prevalence of which varies between 0.9% and 1.9% in Turkey, is a serious health problem that occurs as a result of complete or partial obstruction of the respiratory tract during sleep, resulting in sleep disruption, poor quality sleep, paralysis and even death in sleep. Polysomnography signal recordings (PSG) obtained from sleep laboratories are used for the diagnosis of OSAS, which is related to factors such as the individual's age, gender, neck diameter, smoking-alcohol consumption, and the occurrence of other sleep disorders. Polysomnography is used in the diagnosis and treatment of sleep disorders such as snoring, sleep apnea, parasomnia (abnormal behaviors during sleep), narcolepsy (sleep attacks that develop during the day) and restless legs syndrome. It allows recording various parameters such as brain waves, eye movements, heart and chest activity measurement, respiratory activities, and the amount of oxygen in the blood with the help of electrodes placed in different parts of the patient's body during night sleep. In this article, the performance of PSG signal data for the diagnosis of sleep apnea was examined on the basis of both signal parameters and the method used. First, feature extraction was made from PSG signals, then the feature vector was classified with artificial neural networks, Support Vector Machine (SVM), K-Nearest Neighbors (k-NN) and Logistic Regression (LR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.