Background
Woody plants provide the most abundant biomass resource that is convertible for biofuels. Since lignin is a crucial recalcitrant factor against lignocellulose hydrolysis, genetic engineering of lignin biosynthesis is considered as a promising solution. Many MYB transcription factors have been identified to involve in the regulation of cell wall formation or phenylpropanoid pathway. In a previous study, we identified that PtoMYB115 contributes to the regulation of proanthocyanidin pathway, however, little is known about its role in lignocellulose biosynthesis and biomass saccharification in poplar.
Results
Here, we detected the changes of cell wall features and examined biomass enzymatic saccharification for bioethanol production under various chemical pretreatments in PtoMYB115 transgenic plants. We reported that PtoMYB115 might specifically regulate lignin biosynthesis to affect xylem development. Overexpression of PtoMYB115 altered lignin biosynthetic gene expression, resulting in reduced lignin deposition, raised S/G and beta-O-4 linkage, resulting in a significant reduction in cellulase adsorption with lignin and an increment in cellulose accessibility. These alterations consequently improved lignocellulose recalcitrance for significantly enhanced biomass saccharification and bioethanol yield in the PtoMYB115-OE transgenic lines. In contrast, the knockout of PtoMYB115 by CRISPR/Cas9 showed reduced woody utilization under various chemical pretreatments.
Conclusions
This study shows that PtoMYB115 plays an important role in specifically regulating lignin biosynthesis and improving lignocellulose features. The enhanced biomass saccharification and bioethanol yield in the PtoMYB115-OE lines suggests that PtoMYB115 is a candidate gene for genetic modification to facilitate the utilization of biomass.