Proteasome-catalyzed peptide splicing (PCPS) represents an additional activity of mammalian 20S proteasomes recently identified in connection with antigen presentation. We show here that PCPS is not restricted to mammalians but that it is also a feature of yeast 20S proteasomes catalyzed by all three active site  subunits. No major differences in splicing efficiency exist between human 20S standard-and immuno-proteasome or yeast 20S proteasome. Using H 2 18 O to monitor the splicing reaction we also demonstrate that PCPS occurs via direct transpeptidation that slightly favors the generation of peptides spliced in cis over peptides spliced in trans. The 20S proteasome with its proteolytically active site -subunits (1, 2, and 5) is a N-terminal nucleophilic hydrolase, widely conserved during evolution from yeast to mammals. It is the central proteolytic machinery of the ubiquitin proteasome system and the catalytic core of the 26S proteasome that is built by the association of 19S regulator complexes with the 20S proteasome. As part of the 26S proteasome the 20S core degrades poly-ubiquitylated proteins to peptides of 3 to 20 residues in length (1). A small percentage of these peptides is transported to the endoplasmic reticulum, bound by major histocompatibility complex (MHC) 1 class I molecules, and presented at the cell surface to CD8ϩ cytotoxic T lymphocyte for immune recognition. This antigen presentation pathway is usually restricted to the proteasome-dependent processing of self-and viral-proteins (2). Antigen presentation is generally increased after IFN-␥ stimuli because it induces, among others, the synthesis of alternative catalytic subunits (1i, 2i, and 5i) and the concomitant formation of immunoproteasomes (i-proteasomes) (2).All active  subunits carry an N-terminal threonine residue as reactive nucleophile. Therefore, their distinct cleavage preferences are determined by the structural features of the substrate binding pockets. In particular, the nonprimed substrate binding site of the active site  subunits binds the residues of the peptide substrate that are located at the N-terminal side of the cleaved residue. The residues of the peptide located C-terminally of the cleavage site are bound by the primed substrate binding site. The binding to both substrate binding sites of the active site  subunit provides the stability and the orientation of the substrate, which is mandatory to carry out the proteolytic cleavage (3).Peptides can be produced by proteasomes during the degradation of proteins or polypeptides by conventional peptide bond hydrolysis or by proteasome-catalyzed peptide splicing (PCPS). The latter has been demonstrated in vivo so far only for four MHC class I-restricted epitopes (4 -8), leading to the assumption that PCPS is most likely a rare event that lacks any wider functional importance (9). PCPS was suggested to occur in a direct transpeptidation reaction, in either cis or trans, by linking two proteasomal cleavage products (PCPs) derived either from the same or from two ...