LDs (lipid droplets) are metabolically highly active intracellular organelles. The lipid and protein profiles of LDs are cell-type-specific, and they undergo dynamic variation upon changes in the physiological state of a cell. It is well known that the main function of the LDs in adipocytes is to ensure energy supply and to maintain lipid homoeostasis in the body. In contrast, LDs in inflammatory cells have been implicated in eicosanoid biosynthesis, particularly under inflammatory conditions, thereby enabling them to regulate immune responses. Human mast cells are potent effector cells of the innate immune system, and the triacylglycerol (triglyceride) stores of their cytoplasmic LDs have been shown to contain large amounts of arachidonic acid, the main precursor of pro-inflammatory eicosanoids. In the present review, we discuss the current knowledge about the formation and function of LDs in inflammatory cells with specific emphasis on arachidonic acid and eicosanoid metabolism. On the basis of findings reported previously and our new observations, we propose a model in which lipolysis of LD-triacylglycerols provides arachidonic acid for lipid mediator generation in human mast cells.