This study examines the morphology and various thermal, mechanical, and rheological properties of polylactic acid (PLA)-based nanobiocomposites. The objective of this investigation is to evaluate the potential of modified Algerian clay as a nanofiller through an examination of the characteristics of PLA/Mag-CTA and PLA/CMC nanobiocomposites with varying levels of prepared fillers. This study is concerned with the synthesis of poly(lactic acid)/Maghnite-CTA (PLA/Mag-CTA) and poly(lactic acid)/microcrystalline cellulose (CMC) nanobiocomposites, with two distinctive catalysts and organic reinforcements produced in solution. The outcomes of the various techniques employed demonstrate that PLA nanobiocomposites exhibit a mixed morphology, comprising intercalation and exfoliation. The results from the diverse techniques used show that the PLA nanobiocomposites developed have a mixed intercalated-exfoliated morphology. The dispersion of the Maghnite-CTA filler and microcrystalline cellulose was enhanced during the production of the various materials, as well as the presence of aggregates at high levels. The best rheological performance, corresponding to the optimal dispersion of the nanofiller, was observed for a low quantity of organic filler. Thermal behavior properties were significantly enhanced with the incorporation of the two nanofillers. Analysis by steric exclusion chromatography showed that the fillers used in the nanobiocomposite synthesis increased the average molecular weights of the PLA chains, while the polydispersity index remained constant.