Genetic impacts under selective breeding of agricultural crops have been frequently investigated with molecular tools, but inadequate attention has been paid to assess genetic changes under longterm genetic improvement of plant traits. Here we analyzed allelic changes with respect to wheat trait improvement in 78 Canadian hard red spring wheat cultivars released from 1845 to 2004 and screened with 370 mapped SSR markers. The improvements in quality, maturity, yield, disease, stem rust, leaf rust, sawfly resistance, and agronomy were considered. A total of 154 (out of 370) loci with significant allelic changes across 21 chromosomes were detected in the 78 wheat cultivars separated into improved versus non-improved groups for eight traits. The number of significant loci for improving a trait ranged from four for quality to 68 for yield and averaged 35. Many more loci with significant allelic reduction for improving a trait were detected than those with significant allelic increase. Selection for early maturity introduced more alleles, but improving the other traits purged more alleles. Significantly lower numbers of unique alleles were found in the cultivars with improved traits. The distributions of unique allele counts also varied greatly across the 21 chromosomes with respect to trait improvement. Significant SSR variation between two cultivar groups was observed for improvement in seven traits, but not in stem rust. The proportional SSR variation residing between two groups ranged from 0.014 to 0.118. The proportional SSR variations within the improved cultivar groups consistently were much lower than those within the non-improved groups. These findings clearly demonstrate the association between allelic changes and wheat trait improvements and are useful for understanding the genetic modification of the wheat genome by long-term wheat breeding.