Biological invasions are a multi-stage process (i.e., transport, introduction, establishment, spread), with each stage potentially acting as a selective filter on traits associated with invasion success. Behavior (e.g., exploration, activity, boldness) plays a key role in facilitating species introductions, but whether invasion acts as a selective filter on such traits is not well known. Here we capitalize on the well-characterized introduction of an invasive lizard (Lampropholis delicata) across three independent lineages throughout the Pacific, and show that invasion shifted behavioral trait means and reduced among-individual variation—two key predictions of the selective filter hypothesis. Moreover, lizards from all three invasive ranges were also more behaviorally plastic (i.e., greater within-individual variation) than their native range counterparts. We provide support for the importance of selective filtering of behavioral traits in a widespread invasion. Given that invasive species are a leading driver of global biodiversity loss, understanding how invasion selects for specific behaviors is critical for improving predictions of the effects of alien species on invaded communities.