Evolutionary and ecological dynamics can occur on similar timescales and thus influence each other. While it has been shown that the relative contribution of ecological and evolutionary change to population dynamics can vary, it still remains unknown what influences these differences. Here, we test whether prey populations with increased variation in their defense and competitiveness traits will have a stronger impact of evolution for predator growth rates. We controlled trait variation by pairing distinct clonal lineages of the green alga Chlamydomonas reinhardtii with known traits as prey with the rotifer Brachionus calyciforus as predator and compared those results with a mechanistic model matching the empirical system. We measured the impact of evolution (shift in prey clonal frequency) and ecology (shift in prey population density) for predator growth rate and its dependency on trait variation using an approach based on a two-way ANOVA. Our experimental results indicated that higher trait variation, i.e., a greater distance in trait space, increased the relative contribution of prey evolution to predator growth rate over 3-4 predator generations, which was also observed in model simulations spanning longer time periods. In our model, we also observed clone-specific results, where a more competitive undefended prey resulted in a higher evolutionary contribution, independent of the trait distance. Our results suggest that trait combinations and total prey trait variation combine to influence the contribution of evolution to predator population dynamics, and that trait variation can be used to identify and better predict the role of eco-evolutionary dynamics in predator-prey systems.