Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In South Africa, potato (Solanum tuberosum) late blight epidemics from 1996 to 2007 were caused by Phytophthora infestans clonal lineage US-1 (McLeod et al. 2001; Pule et al. 2013). Similarly, surveys on tomatoes in the mid-1990s only identified the US-1 clonal lineage in South Africa (McLeod et al., 2001). On potatoes, populations from the Southern Cape and Western Cape regions consisted of persistent mefenoxam-resistant populations (McLeod et al. 2001; Pule et al. 2013). Limited mefenoxam (R-enantiomer of metalaxyl) screening in 2021 in the Western Cape showed that potato isolates were sensitive, which prompted our study. Potato late blight samples were collected in 13 potato fields in the 2021 to 2023 seasons in the Western Cape (n = 4), Free State (n = 7), Limpopo (n = 1) and Kwazulu-Natal (n = 1) Provinces, and one tomato sample in 2022 in the Limpopo Province. Fourteen samples, one per field, were simple sequence repeat (SSR) genotyped for 12 loci (Li et al. 2013) using as DNA template, FTA cards, or genomic DNA extracted from cultures. P. infestans isolations from lesions and DNA culture extractions were conducted as previously described (Pule et al. 2013). SSR genotyping revealed that all 14 P. infestans samples belonged to clonal lineage EU_23_A1 (EU23), which has a phenotype (A1 and metalaxyl sensitive) and SSR genotype matching the US-23 lineage (Saville et al., 2021). As expected, minor polymorphisms were detected among the samples at loci Pi02, G11, D13 and SSR4. Mefenoxam sensitivity testing of seven potato isolates from the Free State (n = 3) and Western Cape (n = 4), and one tomato isolate was conducted as previously described (Mcleod et al. 2001). All isolates were sensitive to mefenoxam since no infection and sporulation occurred at 3 µg/ml. This was expected since EU23 has been reported as mefenoxam sensitive in other countries (Kawchuk et al., 2011; McGrath et al., 2015). Replacement of the US-1 clonal lineage by EU23 suggests that the latter lineage is more aggressive or fit than US-1, but this must be verified especially on potatoes. On tomatoes, on the other hand, EU23 is known as a highly aggressive lineage (Kawchuk et al., 2011; McGrath et al., 2015; Saville et al., 2021). Therefore, population displacements may have first occurred on tomatoes from where the lineage spread to potatoes. In the Cape coastal potato production regions, population displacement may have been supported by the withdrawal of mefenoxam/metalaxyl from the region since 1996 because the EU23 lineage is mefenoxam sensitive, as opposed to the previously prevailing US-1 mefenoxam-resistant lineage. More severe potato late blight epidemics has not been observed in recent years in South Africa. However, tomato late blight has increased and is more prevalent in the Limpopo province. The source of the introduction of EU23 into South Africa is unknown. Only test-tube plants and/or greenhouse tubers may be imported into South Africa since 1997. Therefore, the illegal importation of planting material may have introduced the new genotype. Whether this could have occurred from neighbouring African countries is unknown since P. infestans genotyping has not been conducted in these countries. In Africa, EU23 has been reported in northern African countries (Tunisia, Algeria and Egypt) (Saville et al., 2021; El-Ganainy et al., 2023). Mefenoxam and metalaxyl applications will likely be effective again in the Western Cape, but more samples will have to be tested to confirm this. This will provide growers with a more cost-effective fungicide (metalaxyl) since alternative actives with comparable systemic and curative activity are more expensive.
In South Africa, potato (Solanum tuberosum) late blight epidemics from 1996 to 2007 were caused by Phytophthora infestans clonal lineage US-1 (McLeod et al. 2001; Pule et al. 2013). Similarly, surveys on tomatoes in the mid-1990s only identified the US-1 clonal lineage in South Africa (McLeod et al., 2001). On potatoes, populations from the Southern Cape and Western Cape regions consisted of persistent mefenoxam-resistant populations (McLeod et al. 2001; Pule et al. 2013). Limited mefenoxam (R-enantiomer of metalaxyl) screening in 2021 in the Western Cape showed that potato isolates were sensitive, which prompted our study. Potato late blight samples were collected in 13 potato fields in the 2021 to 2023 seasons in the Western Cape (n = 4), Free State (n = 7), Limpopo (n = 1) and Kwazulu-Natal (n = 1) Provinces, and one tomato sample in 2022 in the Limpopo Province. Fourteen samples, one per field, were simple sequence repeat (SSR) genotyped for 12 loci (Li et al. 2013) using as DNA template, FTA cards, or genomic DNA extracted from cultures. P. infestans isolations from lesions and DNA culture extractions were conducted as previously described (Pule et al. 2013). SSR genotyping revealed that all 14 P. infestans samples belonged to clonal lineage EU_23_A1 (EU23), which has a phenotype (A1 and metalaxyl sensitive) and SSR genotype matching the US-23 lineage (Saville et al., 2021). As expected, minor polymorphisms were detected among the samples at loci Pi02, G11, D13 and SSR4. Mefenoxam sensitivity testing of seven potato isolates from the Free State (n = 3) and Western Cape (n = 4), and one tomato isolate was conducted as previously described (Mcleod et al. 2001). All isolates were sensitive to mefenoxam since no infection and sporulation occurred at 3 µg/ml. This was expected since EU23 has been reported as mefenoxam sensitive in other countries (Kawchuk et al., 2011; McGrath et al., 2015). Replacement of the US-1 clonal lineage by EU23 suggests that the latter lineage is more aggressive or fit than US-1, but this must be verified especially on potatoes. On tomatoes, on the other hand, EU23 is known as a highly aggressive lineage (Kawchuk et al., 2011; McGrath et al., 2015; Saville et al., 2021). Therefore, population displacements may have first occurred on tomatoes from where the lineage spread to potatoes. In the Cape coastal potato production regions, population displacement may have been supported by the withdrawal of mefenoxam/metalaxyl from the region since 1996 because the EU23 lineage is mefenoxam sensitive, as opposed to the previously prevailing US-1 mefenoxam-resistant lineage. More severe potato late blight epidemics has not been observed in recent years in South Africa. However, tomato late blight has increased and is more prevalent in the Limpopo province. The source of the introduction of EU23 into South Africa is unknown. Only test-tube plants and/or greenhouse tubers may be imported into South Africa since 1997. Therefore, the illegal importation of planting material may have introduced the new genotype. Whether this could have occurred from neighbouring African countries is unknown since P. infestans genotyping has not been conducted in these countries. In Africa, EU23 has been reported in northern African countries (Tunisia, Algeria and Egypt) (Saville et al., 2021; El-Ganainy et al., 2023). Mefenoxam and metalaxyl applications will likely be effective again in the Western Cape, but more samples will have to be tested to confirm this. This will provide growers with a more cost-effective fungicide (metalaxyl) since alternative actives with comparable systemic and curative activity are more expensive.
The microbial oomycete pathogen, Phytophthora infestans causes severe epidemics of potato late blight in crops globally. Disease management benefits from an understanding of the diversity of pathogen populations. In this study, we explore the dynamics of P. infestans populations in the late blight-potato agro-ecosystem across the Indian subcontinent. Investigations of the macroecological observations at the field level and microbial ecological principles provided insights into future pathogen behaviour. We use a comprehensive simple sequence repeat allele dataset to demonstrate that an invasive clonal lineage called EU_13_A2 has dominated populations over 14 years across India, Bangladesh, and Pakistan. Increasing levels of sub-clonal variation were tracked over time and space and, for the first time, populations in Asia were also compared to the source populations from Europe. Within India, a regional pathogen population structure was observed with evidence for local migration, cross-border movement between surrounding countries, and introductions via imports. There was also evidence of genetic drift and between-season transmission of more strongly pathogenic sub-clones with a complete displacement of some sub-clonal types. The limited introduction of novel genotypes and the use of resistant potato cultivars could contribute to the dominance of the 13_A2 lineage. The insights will contribute to the management of the pathogen in these key global potato production regions.
The oomycete Phytophthora infestans (Mont.) de Bary is a causative agent of the most harmful potato disease, late blight. The pathogenicity of P. infestans is associated with (a)virulence genes (Avr genes). Changes in the composition and nucleotide sequence of these genes lead to the emergence of new races of the pathogen, which affect potato varieties previously considered resistant. Therefore, to successfully combat late blight, it is important to study polymorphisms in Avr genes in populations of this pathogen. We conducted a large‐scale molecular and phytopathological study of P. infestans strains collected in European Russia. In this study, polymorphisms of 11 Avr genes were analysed using SSCP analysis and sequencing. The genes included Avr1, Avr2, Avr2‐like, Avr3a, Avr3b, Avr4, Avr8, Avr‐Smira1, Avr‐blb1, Avr‐blb2 and Avr‐vnt1. As a result, the allelic composition of Avr genes was studied and new alleles unique to Russia were identified in Russian populations of P. infestans for all studied Avr genes, with the exception of Avr4 and Avr8. The vast majority of the Avr1, Avr2‐like, Avr3a, Avr4, Avr‐vnt1 and Avr‐Smira1 gene sequences correspond to known virulence variants of these genes that avoid recognition by the corresponding potato resistance genes. The Avr‐blb2 gene was represented by approximately equal amounts of virulent and avirulent variants. Predominantly avirulent variants were found for the Avr‐blb1 gene. The Avr2, Avr3b and Avr8 genes were represented only by avirulent variants. Summarising the results of our study, we can conclude that the populations of the European territory of Russia differ from the populations of Europe and the USA in the allelic composition of virulence genes. We failed to detect a dominant clonal lineage in the territory of Russia, and the Russian population of P. infestans is highly diverse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.