Ranunculus cabrerensis is an endemic and endangered species of the Northwestern Iberian Peninsula. The molecular markers AFLP and ISSR were used to investigate the genetic diversity and population structure of four populations across its known distribution. Fifteen selective primer combinations of AFLP and seventeen ISSR primer combinations produced a total of 2830 and 103 unambiguously repeatable fragments respectively, of which 97.57 and 81.38% were polymorphic for both markers. The genetic diversity of R. cabrerensis at species level was high (HE = 0.294 by ISSR and HE = 0.191 by AFLP) and differentiation between sampled locations was also relatively high (GST = 0.316 and 0.158 by ISSR and AFLP analysis respectively) compared to other studies of endangered and rare species using the same techniques. The analysis of molecular variance (AMOVA) indicated that the main genetic variation was within sampled locations (73% by AFLP; 52% by ISSR), even though the variation among locations was also significant. Principal Coordinates, NeighborNet and Bayesian analyses revealed a weak but significant relationship between the genetic structures of different populations in R. cabrerensis, with gene flow acting as a homogenizing force that prevents stronger differentiation of populations. Finally, suggestions for conservation strategies to preserve the genetic resources of this species are outlined.