Aims: Tacrolimus is a narrow therapeutic range drug that requires fine dose adjustment, for which pharmacokinetic (PK) models have been amply proposed in renal, but not in liver, transplant recipients. This study aimed to build population PK models and Bayesian estimators (BEs) in adult de novo liver transplant patients receiving either the immediate-release (Prograf, twice daily, TD) or prolonged-release (Advagraf, once daily, OD) forms to help PK-guided dose individualization.Methods: In total, 160 tacrolimus concentration-time profiles (1654 samples) were collected from 80 patients, at day 7 (D7) and week 6 (W6) post-transplant. Four population PK models were developed using in-parallel parametric and nonparametric approaches for each formulation and period post-transplant. The best limited sampling strategies for estimating the area-under-the-curve (AUC) were selected by comparing predicted values to an independent dataset. Finally, the doses required to reach AUC targets were estimated using each BE and compared to the doses obtained using the trapezoidal AUC.Results: Tacrolimus PK was best described using a 1-compartmental model with first-order elimination and 2 γ-distributions to describe the absorption. In the validation datasets, Bayesian AUC estimates yielded mean bias/root mean squared prediction error of −5.06%/13.43% (OD D7), 2.25%/8.51% (OD W6), −2.36%/ 7.27% (TD D7) and 0.87%/9.07% (TD W6) for the in-parallel parametric approach; and 8.95%/17.84% (OD D7), −0.11%/10.13% (OD W6), 3.57%/18.40% (TD D7) and 4.48%/12.59% (TD W6) for the nonparametric approach.Conclusion: The BEs and limited sampling strategies proposed here are able to predict accurately and precisely tacrolimus AUC in liver patients using only 3 plasma concentrations. The dosing methods are available on our ImmunoSuppressive Bayesian dose Adjustment website (www.pharmaco.chu-limoges.fr).