Most invertebrates in the ocean begin their lives with planktonic larval phases that are critical for dispersal and distribution of these species. Larvae are particularly vulnerable to environmental change, so understanding interactive effects of environmental stressors on larval life is essential in predicting population persistence and vulnerability of species. Here, we use a novel experimental approach to rear larvae under interacting gradients of temperature, salinity, and ocean acidification, then model growth rate and duration of olympia oyster larvae and predict the suitability of habitats for larval survival. We find that temperature and salinity are closely linked to larval growth and larval habitat suitability, but larvae are tolerant to acidification at this scale. We discover that present conditions in the Salish Sea are actually suboptimal for olympia oyster larvae from populations in the region, and that larvae from these populations might actually benefit from some degree of global ocean change. Our models predict a vast decrease in mean pelagic larval duration by the year 2095, which has the potential to alter population dynamics for this species in future oceans. Additionally, we find that larval tolerance can explain large-scale biogeographic patterns for this species across its range. Many marine invertebrates begin their lives as tiny planktonic larvae that drift in the water column and disperse away from their parents. For sessile species, these larval periods are especially important as they are the only times throughout life history during which organisms are capable of dispersal. As such, survival during the larval phase is critical for the persistence of populations. Larvae are highly sensitive to environmental conditions 1,2 and the vast majority of larvae do not live to competence, so population demographics and geographic distributions of species are closely related to patterns of larval survival and metamorphosis along environmental gradients 3,4. Thus, responses of early life-history stages to the environmental conditions in the larval habitat help to explain and predict the structures of communities in coastal oceans. Understanding environmental influence on life-history bottlenecks is particularly important as climate variables that affect fitness are rapidly changing. Though the list of anthropogenically-influenced climate variables is broad and regionally variable, three of the most important environmental factors to consider are ocean temperature, acidification, and salinity. Broadly, temperature influences physiology of ectotherms, and thermal tolerances largely dictate distributions of marine organisms 5 ; changes in ocean temperature can cause changes in developmental rate and survival that delimit range boundaries of species 6,7. Acidification, or the shift of carbonate chemistry of a system, can affect calcification of animals with carbonate skeletons 8,9 and, thus, will disproportionately affect many essential ecosystem engineers in marine systems such as corals, bivalves,...