Population viability analysis (PVA) has frequently been used in conservation biology to predict extinction rates for threatened or endangered species. In this study, we used VORTEX to model Korean long-tailed goral (Naemorhedus caudatus) using previously collected ecological data. We focused on modelling population extinction, mean population size and heterozygosity. The minimum viable population size was found to be at least 50 gorals for 100 years, regardless of carrying capacity. However, populations with fewer than 50 gorals could not remain successful in the model. Inbreeding depression, catastrophes and supplementation also affected patterns of population extinction, mean population size and heterozygosity. Supplementation with new individuals had the strongest effect on extinction, mean population size and heterozygosity, followed by initial population size, inbreeding, catastrophes and carrying capacity. These results suggest that a supplementation by extra goral individuals from goral proliferation facilities would be the most helpful means for the restoration programme. More Korean goral-specific information regarding demographic and habitat parameters is needed for further PVA of the species.
ARTICLE HISTORY