Sub-resolution porosity (SRP) is an ubiquitous, yet often ignored, feature in Digital Rock Physics. It embodies the trade-off between image resolution and field-of-view, and it is a direct result of choosing an imaging resolution that is larger than the smallest pores in a heterogeneous rock sample. In this study, we investigate the impacts of SRP on multiphase flow in porous rocks. To do so, we use our newly developed Multiphase Micro-Continuum model to perform first-of-a-kind direct numerical simulations of two-phase flow in porous samples containing SRP. We show that SRP properties (porosity, permeability, wettability) can impact predicted absolute permeabilities, fluid breakthrough times, residual saturations, and relative permeabilities by factors of up to 2, 1.5, 3, and 20, respectively. In particular, our results reveal that SRP can function as a persistent connector preventing the formation of isolated wetting fluid domains during drainage, thus dramatically increasing relative permeabilities to both fluids at low saturations. Overall, our study confirms previous evidence that the influence of SRP cannot be disregarded without incurring significant errors in numerical predictions or experimental analyses of multiphase flow in heterogeneous porous media.