A side effect of using modified polycarboxylates to liquefy a concrete mix is additional pores in the concrete. They change the air void system in hardened concretes, and can be used to evaluate the freeze–thaw resistance of concretes. The purpose of this study is to determine the impact of the abovementioned quantitative and qualitative parameters on the freeze–thaw resistance of concretes. The research program was performed on eight sets of air-entraining and non-air-entraining concretes with a variable content of superplasticizer based on modified polycarboxylates. The basic composition of and air-entraining admixture content in the air-entraining concrete mixtures were held constant. Pore structure tests were performed according to EN 480-11. Scaling resistance was determined according to PKN-CEN/TS 12390-9. The results showed that as the content of modified polycarboxylates increased, the pore structure was adversely affected, and, consequently, the air void parameters deteriorated. At the same time, the freeze–thaw resistance of the non-air-entraining concretes decreased. The pores sizes also changed. As the fluidity increased, the specific surface area decreased, and, consequently, the spacing factor increased. The air-entraining concretes, despite the deterioration in the pore structure due to the modified polycarboxylates, were found to be very good quality concretes after 56 freeze–thaw cycles in the presence of 3% NaCl.