Gram-negative bacteria and their complex cell envelope comprising an outer and inner membrane are an important and attractive system for studying the translocation of small molecules across biological membranes. In the outer membrane of Enterobacteriaceae, trimeric porins control the cellular penetration of small molecules, including nutrients and antibacterial agents. The synergistic action between relatively slow porin-mediated passive uptake across the outer membrane and active efflux transporters in the inner membrane creates a permeability barrier that reinforces the enzymatic modification barrier, which efficiently reduces the intracellular concentrations of small molecules and contributes to the emergence of antibiotic resistance. In this review, we discuss recent advances in our understanding of the molecular and functional roles of classic porins in small molecule translocation in Enterobacteriaceae and consider the crucial role of porins in antibiotic resistance. Commented [w1]: Is this specification necessary here?, in my opinion it deviates, better to put later… Commented [JP2]: Editor request... porins represent the preferred route for the entry of β-lactams, including cephalosporins, penicillins and carbapenems 14-16. The clinical relevance of membrane-associated mechanisms (MAMs) of resistance (i.e. porin defects and/or overexpression of multidrug efflux pumps) has been well established for these antibiotics. The Influx and Efflux rates control the internal concentration of antibiotics and represent the first lane (mechanical barrier) protecting the bacterial cells against therapeutic treatment 1-3,6. Consequently, studies on bacterial porins are receiving a renewed interest due to their key role in the bacterial susceptibility towards clinically used antibiotics. In combination with the expression of antibiotic-modifying enzymes expressed in the periplasm (e.g. β-lactamases), porins play a key role in β-lactam resistance 4,17. In this review, we discuss recent advances in our understanding of the molecular and functional roles of classic porins in antibiotic translocation in Enterobacteriaceae. We explore structural aspects and the insights gained into permeation and the pore translocation process, the regulation of porin expression as well as the role of porins in the emergence of antibiotic susceptibility. Enterobacterial general porins Structural aspects The crystal structures of a general porin from Rhodobacter capsulatus 18 , the OmpF and PhoE porins from E. coli 19 and other E. coli OmpF structures including mutants 20,21 were the first to be solved. Only a limited number of other enterobacterial porin structures have been reported, i.e. E. coli OmpC, K. pneumoniae OmpK36 and Salmonella typhi OmpF 22-24. The lack of data has hindered attempts to relate structure to function. Recently, the structures of two porins from P. stuartii as well as the structures of the OmpF and OmpC orthologs of K. pneumoniae, E. aerogenes and E. cloacae have been reported 12,25,26. Another recent study reported th...