As a kind of biomass resource, waste office paper can be used as a carbon precursor to prepare carbon materials. In this work, carbon microspheres with regular shape, uniform particle size and high carbon content were successfully prepared from waste office paper via a hydrothermal synthesis method with sulfuric acid as the catalyst. The effects of reaction temperature and sulfuric acid dosage on the morphology of the carbon microspheres were studied. The formation mechanism of the carbon microspheres was investigated by analyzing the structure and composition of the products. The results show that the hydrolysis of cellulose in waste paper under hydrothermal conditions was the key for the formation of carbon microspheres. The temperature of hydrothermal reaction and the use of sulfuric acid can affect the morphology of carbon microspheres. The carbon microspheres synthesized at 210 °C with 10 mL sulfuric acid have the best surface morphology, with uniform particle size and higher dispersion. Cyclic voltammetry and electrochemical impedance spectroscopy show that the carbon microspheres have good capacitance performance and can be used in capacitors. This study provides a low-cost precursor for carbon microspheres as well as a new method for the recycle of waste paper.