A theoretical and experimental study has been carried out on flow, dissolution, and precipitation in porous media. Flow experiments were performed on linear carbonate cores using acidic ferric chloride solutions. Dissolution of the carbonate by the acid causes an increase in the solution pH, thereby precipitating ferric hydroxide. This precipitate plugs up the pore throats in the medium and increases the resistance to fluid flow. Fluctuations in the permeability ratio were observed during core flood experiments, confirming the competition between channel formation due to dissolution and pore plugging due to precipitation. The evolution of the pore structure was characterized by Wood's metal castings.A network model has also been developed to describe flow and reaction in porous media. The model was used to simulate the ferric chloride system, and pressure oscillations predicted by the model show identical trends to those observed experimentally. Additionally, the evolution of pores in the network were graphically represented.