Presently, commercially available porous bone substitutes are manufactured by the sacrificial template method, direct foaming method, and polymer replication method (PRM). However, current manufacturing methods provide only the simplest form of the bone scaffold and cannot easily control pore size. Recent developments in medical imaging technology, computer-aided design, and solid freeform fabrication (SFF), have made it possible to accurately produce porous synthetic bone scaffolds to fit the defected bone shape. Porous scaffolds were fabricated by SFF and PRM for a comparison of physical and mechanical properties of scaffold. The suggested threedimensional model has interconnected cubic pores of 500 mm and its calculated porosity is 25%. Whereas hydroxyapatite scaffolds fabricated by SFF had connective macropores, those by PRM formed a closed pore external surface with internally interconnected pores. SFF was supposed to be a proper method for fabricating an interconnected macroporous network. Biocompatibility was confirmed by testing the cytotoxicity, hemolysis, irritation, sensitization, and implantation. In summary, the aim was to verify the safety and efficacy of the scaffolds by biomechanical and biological tests with the hope that this research could promote the feasibility of using the scaffolds as a bone substitute.