A mathematical model is developed to investigate the effect of various processing parameters on pressureassisted combustion synthesis of NiTi intermetallics. Specifically, preheat and ambient temperature, particle size, initial porosity, and pressure differential are studied to determine their influence on propagation behavior and final porosity. The governing equations are solved using a high-order-implicit numerical scheme capable of accommodating the steep spatial and temporal gradients of properties. The predicted results appear plausible and consistent with the trends presented in the available literature.